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Bloch oscillations of a soliton in a molecular chain
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Abstract. This paper presents the results of numerical experiments simulating Bloch oscillations of solitons
in a deformable molecular chain subject to a constant electric field. By using as an example a homogeneous
polynucleotide chain, it is shown that the system under consideration can exhibit complicated dynamical
behaviour: when subject to field intensities less than a certain critical value, a soliton exhibits oscillations
as a whole, while at field intensities exceeding this threshold, the soliton becomes a breather that oscillates.
It is shown that the motion of a charge in a deformable chain is infinite, which in contrast to that in a
rigid chain.

PACS. 71.20.Rv Polymers and organic compounds – 72.80.Le Polymers; organic compounds (including
organic semiconductors)

It is well-known that an electron situated in an ideal rigid
periodic molecular chain, or in a solid-state superlattice,
will exhibit Bloch oscillations in response to a constant
electric field [1–5]. In an external, time-periodic field, the
motion of a charge along a rigid chain can be both infinite
and finite (dynamical localisation) [6–10]. In a deformable
crystal chain, the role of the external field is played by
oscillations of the lattice nodes, which can be represented
as superpositions of plane travelling waves, or phonons.
In this case, the motion of an electron along the chain
is thought to be infinite, since the electron scatters on
phonons and Bloch oscillations do not take place [11].

It is common knowledge that in quasi-one-dimensional
molecular chains, the interaction of an electron with lat-
tice oscillations is not weak. Therefore, we cannot safely
assume that the electron wave function goes off-phase (in
view of scattering of the electron off of phonons), and that
Bloch oscillations will fail.

To clear up this point, we consider the case in which a
charge, placed in a molecular chain, transfers into a soli-
ton state as a result of interaction with lattice oscilla-
tions. This occurs, for example, in homogeneous polynu-
cleotide chains, where the charge’s motion is described by
a Holstein Hamiltonian in which each site represents a nu-
cleotide pair considered as a harmonic oscillator [12–14]:
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Here, Ĥh is the Hamiltonian of a charged particle, a+
n , an

are the operators for creation and annihilation of the
charge on site n, ν is the matrix element for the tran-
sition from the n-th site to the (n ± 1)-th site, αn is the
energy of the particle at the n-th site, �ωB = eEa where E
is the intensity of the electric field, e is the electron charge,
and a is the distance between neighbouring bases. T̂k is an
operator for the kinetic energy of different sites, while Ûp

gives the potential energy of sites, P̂n is an impulse oper-
ator canonically conjugated to the displacement qn, M is
the effective mass of the site, k is an elastic constant, and
α′ is the particle-site displacement coupling constant.

We can now consider a semi-classical description of the
wave function of the system |Ψ(t)〉 as an expansion over
coherent states:
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where |0〉 is the vacuum wave function, and the quantities
βj(t) and πj(t) satisfy the relations:

〈Ψ(t)|qn|Ψ(t)〉 = βn(t), 〈Ψ(t)|P̂n|Ψ(t)〉 = πn(t). (3)

Dynamical equations for the quantities bn(t) and βn(t)
resulting from (1–3) have the form:

i�ḃn = αnbn + ν(bn−1 + bn+1), (4)

Mβ̈n = −γβ̇n − kβn − α′|bn|2. (5)

The equations in (4) are Schrödinger equations, where bn

is the amplitude of the particle’s localisation at the nth
site. The equations in (5) are classical motion equations
describing the dynamics of nucleotide pairs with respect to
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dissipation, where γ is the friction coefficient. We believe
that a semi-classical description, in which the motion of
a charge along a chain is described by quantum motion
equations (4) and the motion of individual nucleotides is
represented by classical motion equations (5), is valid in
the case of a large nucleotide mass (≈300 proton masses).

In the case of a rigid chain, when α′ = 0 is the solution
of the system (4), (5) will be [15,16]:
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where Jn(x) is a Bessel function of the first kind. Solu-
tion (6) corresponds to Bloch oscillations of a particle in
a chain subject to an electric field, for which the particle’s
centre of mass
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exhibits periodic oscillations with a frequency ωB:
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where a is the distance between neighbouring nucleotides,
which is equal to 3.4 Å for DNA.

For α′ �= 0 in the absence of an electric field, a sta-
tionary solution of equations (4) and (5) corresponds to a
localised state of soliton type. To study the evolution of
a soliton state in an electric field, we will use an initial
charge density distribution such that:
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Initial values of x0 and y0 (bn = xn + iyn) for ν > 0 have
the form:
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2 , (10)

which correspond to the ground state of a particle in the
absence of an electric field [13,14].

Figure 1 shows the results of solving equations (4)
and (5) for some values of the parameter κ, which is re-
sponsible for the intensity of the charge’s interaction with
the lattice oscillations when the electric field intensity E =
Eeaτ/� = 0.1, ω̃ = ωτ = 0.01, and η = 1.276. Here, the
values of the parameters ω and η are the same as those in

Fig. 1.

reference [12], and τ = 10−14 s. In dimensional units, these
parameter values correspond to E = 1.94 × 105 V/cm,
ω =

√
k/M = 1012 s−1, and ν = 0.084 eV. The parame-

ter for electron-phonon strength is κ = 4, which in dimen-
sional units corresponds to α′ = 0.13 eV/Å, and is the
same as in reference [12]. This value is close to that used
by other authors (for example, in [18] α′ was found to be
α′ ≈ 0.23 eV/Å).

It can be seen from Figure 1a that in the presence of an
electric field, a soliton executes periodic motion, return-
ing to the point where the soliton’s centre of mass was
initially located. This oscillatory motion corresponds to
Bloch oscillations with a period of T = 2π/ωB. The total
amplitude of the oscillations L is close to that determined
from the solution of the linear problem (6), and is written
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Fig. 2. Transformation of a soliton into a breather for κ = 4
(Fig. 1d at large times).

as ∆Wa/E, where ∆W = 4η stands for the width of the
conductivity band, and is equal to ∆Wτ/� in dimensional
form. For the parameter values presented above, L ≈ 51a
(with a characteristic size for the soliton of ≈10a).

Figures 1b–1d show the evolution of the dynamical
behaviour of a soliton at the initial stages of motion, as
the parameter κ increases. After a period of time, Bloch
oscillations are restored (the restored Bloch oscillations
are not given in Figs. 1b–1d).

In the case of the strong electric fields represented in
Figure 1, a soliton executing Bloch oscillations in time
turns into a breather, oscillating at the Bloch frequency
(Fig. 2). At rather large values of κ, a breather can arise
from the initial soliton state immediately, i.e. by-passing
the phase of the Bloch oscillations as a whole.

Without going into the details of the nonstationary
regimes of the particle’s motion in the cases under con-
sideration, we will restrict ourselves to a purely qualita-
tive description of the picture. It has been observed that
the case of a deformable chain (α′ �= 0) differs qualita-
tively from the limiting case of a rigid chain (α′ = 0),
in that at finite α′, the quantity X(t) given by (7) grows
infinitely as t → ∞ (Fig. 3). This result could have been
predicted from the aforementioned analogy between the
influence of a periodic external electric field on a parti-
cle and the oscillation of phonons. Quite nontrivial, how-
ever, is the finding that under this influence, in the case
of strong particle-phonons interactions (i.e. when a soliton
is formed), Bloch oscillations of the particle persist in the
electric field as oscillations of the soliton as a whole or as
a breather, depending on the system’s parameters.

Fig. 3. The function X(t̃) for various values of ω̃′.

In conclusion, it may be said that this picture of charge
motion in a deformable molecular chain in a constant elec-
tric field at zero temperature T = 0 seems to be rather
general: a positive charge introduced in the chain will
move along the field executing Bloch oscillations. At fi-
nite temperatures, a soliton or breather state will break,
thus leading to failure of the Bloch oscillations. In this
case, the motion of the charge over the chain will be infi-
nite along the lines of the field and will possess an ordinary
band character.
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